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Abstract. In many regression tasks, in addition to an accurate estimate
of the conditional mean of the target distribution, an indication of the
predictive uncertainty is also required. There are two principal sources
of this uncertainty: the noise process contaminating the data and the
uncertainty in estimating the model parameters based on a limited sam-
ple of training data. Both of them can be summarised in the predictive
variance which can then be used to give confidence intervals. In this pa-
per, we present various schemes for providing predictive variances for
kernel ridge regression, especially in the case of a heteroscedastic regres-
sion, where the variance of the noise process contaminating the data is
a smooth function of the explanatory variables. The use of leave-one-out
cross-validation is shown to eliminate the bias inherent in estimates of
the predictive variance. Results obtained on all three regression tasks
comprising the predictive uncertainty challenge demonstrate the value
of this approach.

1 Introduction

The standard framework for regression is the following: Given a training set

D = {(xi, yi)}`
i=1 , xi ∈ X ⊂ Rd, yi ∈ R, (1)

the goal is to infer a function µ(x) which predicts the best value (in the least
squares sense) of the target function on any test point x. However, in some
situations, it is also useful to know the confidence of this prediction. For this
reason, we also want to infer a function σ(x) corresponding to the uncertainty
of our prediction. For instance, the result of our prediction could be a statement
of the form: “with 95% confidence, I think that the target associated with point
x is in the interval [µ(x) − 2σ(x), µ(x) + 2σ(x)]”. It is important to note that
this uncertainty comes from two independent components:

1. The noise in the data
2. The uncertainty in the estimation of the target function



Typically, the first contribution is preponderant when there are a lot of training
data, while the second one becomes more important when they are few training
data. Let us illustrate this by two extreme examples. First, imagine that X = x0

and P (y|x0) is normally distributed with mean 0 and variance σ. After seeing
` examples, the empirical mean is near from the true target (0 in this case and
the distance is of the order σ√

`
). Thus, when ` is large, we can predict the target

value very accurately (i.e. the conditional mean), but because of the noise, we
are not so sure about the target associated with an unseen test point. Another
extreme example is the following: suppose that we know that there is no noise in
the data, but that we are given a test point which is infinitely far away from the
other training samples. Then, we are just completely unsure of the conditional
mean. In summary, one can say that the uncertainty of the prediction is the sum
of two terms:

Uncertainty in the conditional mean + estimated noise level.

In this paper, we will try to estimate this uncertainty directly, by considering
that the goal is to infer a function from X to R× R+, x 7→ (µ(x), σ(x)) where
the loss associated to a test point (x, y) is

log σ2(x) +
[µ(x)− y]2

σ2(x)
. (2)

Let us now be more precise by giving the definitions of the following quantities:

Conditional mean This is true mean Ey|xy where the expectation is taken
with respect to the true data generating process.

Predictive mean We define this quantity as µ(x), the first output of the func-
tion being inferred. This is an estimate of the conditional mean given a
training set.

Conditional variance We do not define it as the true noise level but in asso-
ciation with a predictive mean as

Ey|x(y − µ(x))2 = (Ey|xy − µ(x))2 + Ey|x(y − Ey|xy)2.

Predictive variance Similarly to the predictive mean, this is defined as σ2(x),
the square of the second output argument of the inferred function.

At this point, we would like to make the following remarks:

– The reason for considering the loss (2) is that it is (up to a constant) the
negative log probability of a test point under the Gaussian predictive distri-
bution with mean µ(x) and variance σ2(x), as used in [1].

– From the above definitions, the best predictive mean and variance for the
loss (2) are the conditional mean and variance.



– The loss might seem arbitrary and from a decision theory point of view, one
should consider the loss associated with the action taken based on the pre-
diction (µ(x), σ(x)). However, this still seems a reasonable “generic” loss.
More generally, it is worth noting that a loss function is always necessary
whenever a prediction is required.

– Instead of computing a predictive mean and variance, one could compute a
predictive distribution (and the loss would be negative log predictive prob-
ability). But estimating a function instead of two real numbers is a more
complicated inference problem and for the sake of simplicity, we do not con-
sider it here. Note that in binary classification, the problem is much simpler
as there is only real number to estimate, P (y = 1|x).

The algorithm we propose in this paper alternates between updates of the
predictive mean and of the predictive variance. For fixed σ, the predictive mean
µ is modelled using an heteroscedastic kernel ridge regression algorithm. Het-
eroscedastic here just means that the error on a given training point xi is
weighted by σ−2(xi) (cf equation (2)). For fixed µ, a regression is performed
on log σ in order to minimise (2). Again a regularised kernel regression algo-
rithm is used for this purpose. Note that for learning the conditional variance,
one should not use the same set of training points as the one used to learn
the conditional mean since (µ(xi) − yi)2 is not an unbiased estimator of the
conditional variance at xi if this point has been used to learn µ. Instead of a
considering a “fresh” training set, we will use the leave-one-out procedure.

The basic algorithm that we use is Kernel Ridge Regression [2]. Considering
the strong link of this algorithm with Gaussian Processes [3], the reader might
wonder why we do not use this latter to estimate the predictive variances. The
two reasons for this are:

1. We consider the more general case of heteroscedastic noise (i.e. whose vari-
ance depends on the input location).

2. We aim at showing that predictive variances can be calculated in a non
Bayesian framework. However, we do not pretend that this approach is su-
perior to the Bayesian approach. One of our main motivation is to answer
the usual Bayesian criticism that standard non Bayesian methods do not
provide predictive variances.

2 Kernel Ridge Regression

Kernel ridge regression (KRR) [2], or equivalently the least-squares support vec-
tor machine (LS-SVM) [4] provides perhaps the most basic form of kernel learn-
ing method. Given labelled training data (1), the kernel ridge regression method
constructs a linear model µ(x) = w · φ(x) + b in a fixed feature space F given
by a fixed transformation of the input space, φ(x) : X → F . However, rather
than specifying F directly, it is induced by a positive-definite kernel function [5]



K : X × X → R, which defines the inner product between vectors evaluated in
F , i.e. K(x,x′) = φ(x) ·φ(x′). Kernel functions typically used in kernel learning
methods include the spherical or isotropic Gaussian radial basis function (RBF)
kernel,

K(x,x′) = exp
{
−κ‖x− x′‖2

}
(3)

where κ is a kernel parameter, controlling the locality of the kernel, and the
anisotropic Gaussian RBF kernel,

K(x,x′) = exp

{
−

d∑
i=1

κi [xi − x′i]
2

}
(4)

which includes separate scale parameters, κ = (κ1, κ2, . . . , κd), for each input
dimension. The “kernel trick” allows us to create powerful linear models in high,
or even infinite-dimensional feature spaces, using only finite dimensional quanti-
ties, such as the kernel or Gram matrix, K = [kij = K(xi,xj)]

`
i,j=1 (for a more

detailed introduction to kernel learning methods, see [6, 7]). The kernel ridge
regression method assumes that the data represent realisations of the output of
some deterministic process that have been corrupted by additive Gaussian noise
with zero mean and fixed variance, i.e.

yi = µ(xi) + εi, where εi ∼ N (0, σ2), ∀ i ∈ {1, 2, . . . , `}.

As in conventional linear ridge regression [8], the optimal model parameters
(w, b) are determined by minimising a regularised loss function representing the
penalised negative log-likelihood of the data,

1
2
γ||w||2 +

∑̀
i=1

[µ(xi)− yi]
2
.

The parameter γ can either be interpreted as a regularisation parameter or as
an inverse noise variance. As shown in a more general setting in Section 3, the
optimal w can be expressed as w =

∑`
i=1 αiφ(xi), where α is found by solving

the following linear system,[
K + γI 1

1> 0

] [
α
b

] [
y
0

]
.

2.1 A Simple Model for Heteroscedastic Data

The kernel ridge regression model assumes the target data represent realisations
of a deterministic system that have been corrupted by a Gaussian noise process
with zero mean and constant (homoscedastic) variance. This is unrealistic in
some practical applications, where the variance of the noise process is likely
to be dependent in some way on the explanatory variables. For example, in
environmental applications, the variability in the intensity of sunlight reaching



ground level is more variable in Spring, Summer and Autumn as, at least in the
United Kingdom, the Winter sky is predominantly overcast. A less restrictive
approach is based on the assumption of a heteroscedastic, where the variance
of the Gaussian noise is made a function of the explanatory variables. It is
well known that for a model trained to minimise the squared error, the output
approximates the conditional mean of the target data. Therefore, if we then train
a second kernel ridge regression model to predict the squared residuals of the
first, the output of the second model will be an estimate of the conditional mean
of the squared residuals, i.e. the conditional variance of the target distribution.
This method was suggested in the case of multi-layer perceptron networks (see
e.g. [9]) by Satchwell [10] and applied to the problem of automotive engine
calibration by Lowe and Zapart [11].

There are two problems with this method: the first one is that the squared
residual is not an estimate of the conditional variance. Indeed, imagine that
some over-fitting occurred while modelling the conditional mean: the squared
residuals can then be very small not reflecting the true conditional variance.
The second problem is that while modelling the conditional mean, the amount
of regularisation is the same over all the space, while intuitively, one would like
to regularise more in noisy regions. The first problem will be addressed in section
5 and the second one in the following section.

3 Heteroscedastic Kernel Ridge Regression

A more natural method of modelling heteroscedastic data fits the models of
the predictive mean and predictive variance, or equivalently the predictive stan-
dard deviation, simultaneously, using a likelihood function corresponding to a
Gaussian noise process with data-dependant variance, i.e.

p(D|w) =
∏̀
i=1

1√
2πσ(xi)

exp

{
− [µ(xi)− yi]

2

2σ2(xi)

}
where w represents the parameters of the combined model. A linear model of
the conditional mean, µ(x) = wµ · φµ(x) + bµ is then constructed in a feature
space Fµ corresponding to a positive definite kernel Kµ(x,x′) = φµ(x) ·φµ(x′).
Similarly, the standard deviation being a strictly positive quantity, a linear
model of the logarithm of the predictive standard deviation, log σ(x) = wσ ·
φσ(x) + bσ is constructed in a second feature space, Fσ, induced by a second
positive-definite kernel Kσ(x,x′) = φσ(x) · φσ(x′). The optimal model param-
eters, (wµ, bµ.wσ, bσ), are determined by minimising a penalised negative log-
likelihood objective function,

L =
1
2
γµ‖wµ‖2 +

1
2
γσ‖wσ‖2 +

1
2

∑̀
i=1

{
log σ(xi) +

[µ(xi)− yi]2

2σ2(xi)

}
, (5)

with regularisation parameters, γµ and γσ, providing individual control over the
complexities of the models of the predictive mean and standard deviation respec-
tively (c.f. [12, 13]). Note that (5) is the regularised objective function associated



with the loss (2). The use of a heteroscedastic loss leads to an important interac-
tion between the data misfit and regularisation terms comprising the objective
function : The squared error term is now weighted according to the estimated
local variance of the data. As a result, the influence of the regularisation term
is now increased in areas of high predictive variance. This is in agreement with
our intuition that more flexible models are more easily justified where ampli-
tude of the noise contaminating the data is low and meaningful variations in
the underlying deterministic system we hope to model are obscured to a lesser
degree. The log σ(xi) term penalises unduly high predictive standard deviations.
It should be noted that it is possible for the negative log-likelihood term in (5) to
go to minus infinity if the predictive variance goes to zero and µ(xi) = yi. One
could circumvent this problem by adopting a suitable prior on bσ, to indicate
that we do not believe in very small predictive variances. However, this might
not be enough and a more principled solution is presented in section 5. From a
theoretical point of view, it is known that the ERM principle is consistent [14],
so it might seem surprising that the minimiser of (5) would not yield functions
giving a good test error (2), as the number of points goes to infinity. The reason
why ERM could fail here is that the loss is unbounded and thus the convergence
results about ERM do not apply.

A straight-forward extension of the representer theorem [15–17] indicates
that the minimiser of this objective function can be expressed in the form of a
pair of kernel expansions: For the model of the predictive mean,

wµ =
∑̀
i=1

αµ
i φµ(xi) =⇒ µ(x) =

∑̀
i=1

αµ
i K

µ(xi,x) + bµ,

and similarly for the model of the predictive standard deviation,

wσ =
∑̀
i=1

ασ
i φσ(xi) =⇒ log σ(x) =

∑̀
i=1

ασ
i Kσ(xi,x) + bσ.

The resulting model is termed a heteroscedastic kernel ridge regression (HKRR)
machine [18, 17] (see also [19]). An efficient iterative training algorithm for this
model alternates between updates of the model of the predictive mean and up-
dates of the model of the predictive standard deviation.

3.1 Updating the Predictive Mean

Ignoring any terms in the objective function (5) that do not involve wµ or bµ, a
simplified cost function is obtained, which is used to update the parameters of
the model of the predictive mean, µ(xi),

Lµ =
1
2
γµ‖wµ‖2 +

1
2

∑̀
i=1

λi [µ(xi)− yi]
2 (6)



where λ−1
i = 2σ2(xi). This is essentially equivalent to the cost function for a

weighted least-squares support vector machine (LS-SVM) [4]. Minimising (6) can
be recast in the form of a constrained optimisation problem,

min J =
1
2
‖w‖2 +

1
2γµ

∑̀
i=1

λiε
2
i (7)

subject to
yi = wµ · φµ(xi) + bµ + εi, ∀ i ∈ {1, 2, . . . , `}, (8)

The Lagrangian for this optimisation problem gives the unconstrained minimi-
sation problem,

L =
1
2
‖wµ‖2 +

1
2γµ

∑̀
i=1

λiε
2
i −

∑̀
i=1

αµ
k {w

µ · φµ(xi) + bµ + εi − yi} , (9)

where αµ = (αµ
1 , αµ

2 , . . . , αµ
` ) ∈ R` is a vector of Lagrange multipliers.

∂L
∂wµ

= 0 =⇒ wµ =
∑̀
i=1

αµ
i φµ(xi) (10)

∂L
∂bµ

= 0 =⇒
∑̀
i=1

αµ
i = 0 (11)

∂L
∂εi

= 0 =⇒ αµ
i =

λiεi

γµ
, ∀i ∈ {1, 2, . . . , `} (12)

Using (10) and (12) to eliminate w and ε = (ε1, ε2, . . . , ε`), from (9), we find
that

∑̀
j=1

αµ
j φµ(xj) · φµ(xi) + bµ +

γµαµ
i

λi
= yi ∀ i ∈ {1, 2, . . . , `} (13)

Noting that Kµ(x,x′) = φµ(x) · φµ(x′), the system of linear equations can be
written more concisely in matrix form as[

Kµ + γµZ 1
1T 0

] [
αµ

b

] [
y
0

]
,

where Kµ =
[
kµ

ij = Kµ(xi,xj)
]`
i,j=1

and Z = diag{λ−1
1 , λ−1

2 , . . . , λ−1
` }. The

parameters for the model of the predictive mean can then be obtained with a
computational complexity of O(`3) operations.

3.2 Updating the Predictive Standard Deviation

Similarly, neglecting terms in the objective function (5) that do not involve wσ or
bσ, a simplified cost function is obtained, which is used to update the parameters



of the model of the predictive standard deviation, σ(xi), dividing through by
γσ,

Lσ =
1
2
‖wσ‖2 +

1
2γσ

∑̀
i=1

[zi + ξi exp{−2zi}] , (14)

where ξi = 1
2 [µ(xi)− yi]

2 and zi = log σ(xi). The reason for this latter re-
parametrisation is that (14) yields an unbounded and convex optimisation prob-
lem.

A closed form expression for the minimum of this objective function is not
apparent, and so it is minimised via an iteratively re-weighted least-squares
(IRWLS) procedure [20], which is effectively equivalent to a Newton’s method.
Indeed, at each iteration, a quadratic approximation of the objective function
around the solution is performed and this quadratic approximation is minimised
analytically, yielding an updated solution. Consider the negative log-likelihood
for a single training pattern,

li = zi + ξi exp{−2zi},

with first and second derivatives, with respect to zi, given by

∂li
∂zi

= 1− 2ξi exp{−2zi} and
∂2li
∂z2

i

= 4ξi exp{−2zi}.

As we are interested only in minimising the negative log-likelihood, we substitute
a weighted least-squares criterion, providing a local approximation of li only up
to some arbitrary constant, C, i.e.

qi = βi[ηi − zi]2 ≈ li + C,

Clearly, we require the gradient and curvature of qi and li, with respect to zi, to
be identical, and therefore

∂2qi

∂z2
i

=
∂2li
∂z2

i

=⇒ βi = 2ξi exp{−2zi},

∂qi

∂zi
=

∂li
∂zi

=⇒ ηi = zi −
1

2βi
+

1
2
.

The original objective function (14) for the model of the predictive standard
deviation, can then be solved iteratively by alternating between updates of ασ

and bσ via a regularised weighted least-squares loss function,

L̃σ =
1
2
‖w‖2 +

1
2γσ

∑̀
i=1

βi[ηi − zi]2, (15)

and updates of the weighting coefficients, β = (β1, β2, . . . , β`), and targets, η =
(η1, η2, . . . , η`), according to,

βi = 4ξi exp{−2zi} and ηi = zi −
2
βi

+
1
2
. (16)



The weighted least-squares problem (15) can also be solved via a system of
linear equations, with a computational complexity of O(`3) operations, using
the methods described in section 3.1.

4 Model Selection

While efficient optimisation algorithms exist for the optimisation problems defin-
ing the primary model parameters for kernel machines, generalisation perfor-
mance is also dependent on the values of a small set of hyper-parameters, in
this case the regularisation and kernel parameters. The search for “good” values
of these hyper-parameters is an activity known as model selection. A common
model selection strategy seeks to minimise a cross-validation [21] estimate of
some appropriate performance statistic, such as the mean squared error or nega-
tive log-likelihood. The k-fold cross-validation procedure partitions the available
data into k disjoint subsets of approximately equal size. A series of k models are
then fitted, each using a different combination of k−1 subsets. The model selec-
tion criterion (2) is then evaluated for each model, in each case using the subset
of the data not used in fitting that model. The k-fold cross-validation estimate
of the model selection criterion is then taken to be the mean of the criterion
on the “test” data for each model. The most extreme form of cross-validation,
in which each partition consists of a single pattern, is known as leave-one-out
cross-validation [22].

5 Unbiased Estimation of the Predictive Variance

Maximum likelihood estimates of variance, whether homoscedastic or heteroscedas-
tic are known to be biased. If over-fitting is present in the model of the predictive
mean, then the apparent variance of training data is reduced as the model at-
tempts to “explain” the realisation of the random noise process corrupting the
data to some degree. This will cause any estimate of the conditional variance
based on the predictive mean to be unrealistically low. For this reason, the condi-
tional variance should be estimated using training samples which have not been
used to estimate the conditional mean. In this study, we use instead a leave-one-
out cross-validation estimate for the predictive variance. As a result, the model
of the predictive variance is effectively fitted on data that has not been used to
fit the model of the predictive mean, where in principle no over-fitting can have
occurred and so the bias in the predictive variance is eliminated. This approach is
equally valid for estimating the constant variance of a conventional kernel ridge
regression model, for estimates of predictive variance made by a second kernel
ridge regression model, or for the joint model of predictive mean and variance
implemented by the heteroscedastic kernel ridge regression model. Fortunately,
this approach is computationally feasible, as leave-one-out cross-validation can
be performed efficiently in closed form for kernel learning methods minimising
a (weighted) least-squares cost function [23].



5.1 Efficient Leave-One-Out Cross-Validation of Kernel Models

Consider a linear regression model ŷ(x) = w ·φ(x) + b constructed in a feature
space induced by a positive definite kernel, where the parameters (w, b) are given
by the minimiser of a regularised weighted least-squares objective function,

L =
∑̀
i=1

λi [yi −w · φ(xi)− b]2 + γ‖w‖2.

The parameters of the resulting kernel expansion, ŷ(x) =
∑`

i=1 αiK(xi,x) + b,
are given by the solution of a system of linear equations,[

K + γΛ 1
1T 0

] [
α
b

]
=
[

y
0

]
where Λ = diag

{
λ−1

1 , λ−1
2 , . . . , λ−1

`

}
. Let H represent the “hat” matrix, which

maps the targets onto the model outputs, i.e. ŷ = Hy, such that

H = [hij ]
`
i,j=1 = [K 1]

[
K + γΛ 1

1T 0

]−1

(17)

For the sake of notational convenience, let ŷj = ŷ(xj). During each iteration of
the leave-one-out cross-validation procedure, a regression model is fitted using
all but one of the available patterns. Let ŷ

(−i)
j represent the output of the model

for the jth pattern during the ith iteration of the leave-one-out procedure and
ŷ(−i) =

(
ŷ
(−i)
1 , ŷ

(−i)
2 , . . . , ŷ

(−i)
`

)
. Note that given any training set and the corre-

sponding learned model, if one adds a point in the training set with target equal
to the output predicted by the model, the model will not change since the cost
function will not be increased by this new point. Here, given the training set
with the point xi left out, the predicted output are by definition ŷ(−i) and they
will not change if the point xi is added with target ŷ

(−i)
i

ŷ(−i) = Hy∗, where y∗j =
{

yj if j 6= i

ŷ
(−i)
j if j = i

. (18)

Subtracting yi from both sides of the ith equation in the system of linear equa-
tions (18),

ŷ
(−i)
i − yi =

∑̀
j=1

hijy
∗
j − yi

=
∑
j 6=i

hijyj + hiiŷ
(−i)
i − yi

=
∑̀
j=1

hijyj − yi + hii

{
ŷ
(−i)
i − yi

}
= ŷi − yi + hii

{
ŷ
(−i)
i − yi

}



This may be rearranged in order to obtain a closed form expression for the the
residual for the ith training pattern during the ith iteration of the leave-one-
out cross-validation procedure, e−i

i , in terms of the residual for a model trained
on the entire dataset for that pattern, ei, and the ith element of the principal
diagonal of the hat matrix, hii,

e
(−i)
i = yi − ŷ

(−i)
i =

yi − ŷi

1− hii
=

ei

1− hii
(19)

Note that the diagonal elements of the hat matrix lie in the range [0, 1], and so
the residuals under leave-one-out cross-validation can never be smaller in mag-
nitude than the residuals for a model trained on the entire dataset. Therefore
any estimate of predictive variance based on leave-one-out cross-validation will
also be greater than the estimate based on the output of a model trained on the
entire dataset, thereby reducing, if not actually eliminating, the known conser-
vative bias in the latter. Another derivation of the leave-one-out error is given
in Appendix A.

5.2 Experimental Demonstration

In this section we use a synthetic regression problem, taken from Williams [13],
in which the true predictive standard deviation is known exactly, to demonstrate
that the leave-one-out heteroscedastic kernel ridge regression (LOOHKRR) model
provides almost unbiased estimates of the predictive standard deviation. The
univariate input patterns, x, are drawn from a uniform distribution on the in-
terval (0, π); the corresponding targets, y, are drawn from a univariate Normal
distribution with mean and variance that vary smoothly with x:

x ∼ U(0, π), and y ∼ N

(
sin
{

5x

2

}
sin
{

3x

2

}
,

1
100

+
1
4

[
1− sin

{
5x

2

}]2)
.

Figure 1, parts (a) and (b), show the arithmetic mean of the predictive mean
and ± one standard deviation credible interval for simple and leave-one-out
heteroscedastic kernel ridge regression models respectively, over 1000 randomly
generated realisations of the dataset, of 64 patterns each. A radial basis function
kernel was used, with width parameter, κ = 2, for both the model of the predic-
tive mean and the model of the predictive standard deviation, the regularisation
parameters were set as follows: γµ = γσ = 1 (the hyper-parameters we delib-
erately chosen to allow some over-fitting in the model of the predictive mean).
In both cases the fitted mean is, on average, in good agreement with the true
mean. Figure 1, parts (c) and (d), show the arithmetic mean of the predictive
standard deviation for the simple and leave-one-out heteroscedastic kernel ridge
regression models. The simple heteroscedastic kernel ridge regression model, on
average, consistently under-estimates the conditional standard deviation, and so
the predicted credible intervals are optimistically narrow. The mean predictive
standard deviation for the leave-one-out heteroscedastic kernel ridge regression



model is very close to the true value. This suggests that the estimation of the
predictive standard deviation is essentially unbiased as the expected value is
approximately equal to the true value.

6 Gaussian Process Models

Gaussian Processes (GP) for regression [3] are powerful non parametric prob-
abilistic models. They makes use of a prior covariance matrix of the targets y
which has the form

Kij = a(K(xi,xj) + γδij),

where K is any kernel function (for instance, the one defined in equation (3)), a is
the amplitude parameter and γ is the noise to signal ratio parameter. Those pa-
rameters, as well as the hyper-parameters of the kernel are found by minimising
the negative log evidence

log det K + y>K−1y. (20)

Note that a can be found in closed form,

a =
y>K−1

a=1y

n
.

The mean prediction is the same as in homoscedastic kernel ridge regression
(without bias),

µ(x) = k>(x)K−1y,

with k>(x) = a(K(x1,x), . . . ,K(xn,x)). The difference between kernel ridge
regression and Gaussian Processes is that GP give a natural estimation of the
predictive uncertainty as:

σ2(x) = aγ + aK(x,x)− k>(x)K−1k(x). (21)

Note that the first term is constant and is the estimated noise level. The sum
of the two others corresponds to the uncertainty in the mean prediction: for
instance, it is large when the test point is far away from the training data.

Let us compare the leave-one-out predictive variances given by our method
and by GP. For GP, if we let the point i out of the training set, its predictive
variance will be:

a(Kii −K>
ı̄i (Kı̄ı̄)−1Kı̄i) =

a

K−1
ii

=
y>K−1y

nK−1
ii

, (22)

where Kı̄ı̄ is the matrix K with the i-th column and row removed. This is not
completely exact as one should recompute a once the point i is out of the training
set. But usually, values of hyper-parameters are not really affected by the leave-
one-out procedure. For our method, the leave-one-out error on the point i is
given by (

[K−1y]i
K−1

ii

)2

. (23)
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Fig. 1. Arithmetic mean of the estimate of the predictive mean and ± one standard de-
viation credible interval for (a) simple heteroscedastic kernel ridge regression (HKRR)
and (b) leave-one-out heteroscedastic kernel ridge regression (LOOHKRR) models for
a synthetic regression problem, (c) and (d) display the corresponding means of the
estimated predictive standard deviation for the HKRR and LOOHKRR models re-
spectively. All graphs show average results computed over 1000 randomly generated
datasets (see text for details).



We can see that the two expressions are similar, but the GP takes the data
less into account (the numerator is constant). This is not surprising, as in gen-
eral, Bayesian methods rely more on the prior and less on the data. This yields
near optimal predictions when the prior correctly reflects our knowledge of the
problem, but can be suboptimal when there is prior mismatch. We will illustrate
this point by the following toy problem. We want to model the step function on
[−1, 1], f(t) = 1 if t > 0, 0 otherwise. For this purpose, we used the Gaussian
kernel (3). Note that this kernel is not the best suited for this task because it
is smooth and stationary whereas the target function is not. The kernel width
κ and the ridge γ have been optimised by minimising the negative log evidence
(20). 100 points xi have been chosen uniformly spaced in the interval [−1, 1] and
the targets have been corrupted with a Gaussian noise of standard deviation 0.1.
The data and the mean prediction (which is the same for GP and kernel ridge
regression) are plotted in the left of figure 2.
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Fig. 2. Step function toy problem. Left: Training points and mean prediction. Right:
GP predictive variance and the “optimal” one (given the mean). Bottom: Leave-one-out
errors and the resulting predictive variance learned by the proposed method.



Given a test point x and the mean prediction µ(x), the “optimal” predic-
tive variance (which we actually defined in the introduction as the conditional
variance) is obtained by minimising the loss (2) and is

σ2(x) = Ey|x(µ(x)− y)2 = (µ(x)− f(x))2 + noise variance,

where f(x) is the (unknown) target function. In our toy problem, we know
the target function and the noise variance, so we can compute this optimal
predictive uncertainty, as shown in the right of figure 2. We can see that this
“optimal” predictive variance is very large around 0. This is because the mean
prediction is not very good in this region and ideally, the predictive variance
needs to be increased in regions where the mean prediction is far form the target
function. However, when the kernel function used by the GP is stationary and
the points are equally spaced, the predictive variance (21) given by the GP is
almost constant, as shown in the right of figure 2: in this case, it is unable to
see that the predictive variance should be increased around 0. The leave-one-out
errors are plotted as dots in the bottom of figure 2. The first observation is that
the misfit around 0 is well captured. However, the variance of the leave-one-out
errors in the flat regions is high. This is directly related to the noise in the
targets. For instance, it can happen that “by chance”, the leave-one-out error
on a given point is almost 0; but that does not mean that we are necessarily
sure of the value of the function at this point. That is the reason why we have
to perform a regression for the predictive variance (cf section 3.2). For this toy
problem, we took the same kernel and regularisation parameter as used for the
mean prediction and minimised (14), with ξi being the leave-one-out error on xi.
The estimated predicted variance is plotted at the bottom of figure 2. For this
toy problem, the average negative log likelihoods (2) computed on a large test
set are: -3.17 for the “optimal”, -2.93 for our method and -2.3 for the GP. We
would like to point out that in most real world examples, GP give reasonable
predictive variances. This toy problem is just an illustration of what can happen
in the case of a “prior mismatch” and how a non Bayesian method can overcome
this difficulty.

As an aside, it is interesting to note that even if the leave-one-out predictive
variance (22) for GP and the leave-one-out error (23) can be quite different, their
average should be similar, as they are both estimate of the test error. On our
toy problem, they were respectively 0.0447 and 0.0459, while the test error was
0.0359. We can try to see this similarity from an analytical point of view. First
note that the gradient of (20) with respect to the ridge parameter should be 0,
yielding

trace K−1 =
1
a

∑
[K−1y]2i .

So the mean of (22) can be rewritten as

1
n

∑ 1
K−1

ii

∑
[K−1y]2i∑

K−1
ii

,



which is very similar to the mean of (23),

1
n

∑(
[K−1y]i

K−1
ii

)2

,

if the variance of the K−1
ii is small.

7 Results for Challenge Benchmark Datasets

In this section, we detail results obtained on the three non-linear regression
benchmark problems considered by the predictive uncertainty challenge, namely
gaze, stereopsis and Outaouais. The methods that we considered are the
following:

KRR Conventional kernel ridge regression with fixed variance prediction based
on the training set MSE.

KRR + LOO Conventional kernel ridge regression with fixed variance predic-
tion based on the leave-one-out estimate of the MSE.

KRR + KRR Conventional kernel ridge regression with predictive variance
via kernel ridge regression on the residuals over the training set.

KRR + LOO + KRR Conventional kernel ridge regression with predictive
variance via kernel ridge regression on the leave-one-out residuals.

HKRR Heteroscedastic kernel ridge regression.

LOOHKRR Heteroscedastic kernel ridge regression with unbiased estimation
of the predictive variance. This is the method described in this paper.

7.1 Gaze

Table 1 shows the negative logarithm of the predictive density (NLPD) and
mean squared error (MSE) for various kernel ridge regression-based models over
training, validation and test partitions of the gaze benchmark dataset. A visual
inspection of the data revealed that columns 3 and 4 of the validation and test
partitions contained a small number of outliers (large negative values well out-
side the range of values observed in the training data). These outliers were “re-
paired” via a simple missing data imputation procedure based on linear regres-
sion. An isotropic Gaussian radial basis function kernels were used throughout,
with model selection based on minimisation of the the 10-fold cross-validation
estimate of the MSE (for standard kernel ridge regression models) or NLPD
(for the heteroscedastic kernel ridge regression models). The use of leave-one-
out cross-validation in fitting the model of the predictive variance also provides
demonstrably better performance, with the KRR+LOO and KRR+LOO+KRR
outperforming the KRR, and KRR+KRR models respectively. The very poor
performance of the KRR+KRR model provides a graphic example of the dangers



associated with the unrealistically low estimates of predictive variance provided
by existing approaches. In the case of the HKRR and LOOHKRR models, the
NLPD is lower for the HKRR model because it provides a better model of the
conditional mean. It should be noted, however, that the differences in test set
NLPD between models, with the exception of the KRR and KRR+KRR, are
generally very small and unlikely to be really meaningful.

Table 1. Performance of various models, based on kernel ridge regression, on the gaze

dataset, in terms of mean squared error (MSE) and negative log predictive density
(NLPD) over the training and validation partitions.

Mean Train Set Valid Set Test Set Train Set Valid Set Test Set

description NLPD NLPD NLPD MSE MSE MSE

KRR 4.723 5.776 5.8172 0.01165 0.03654 0.04029

KRR+LOO 4.912 5.292 5.3077 0.01165 0.03653 0.04029

KRR+KRR 5.003 12.119 7.6011 0.01165 0.03653 0.04029

KRR+LOO+KRR 4.857 5.282 5.2951 0.01165 0.03653 0.04029

HKRR 5.119 5.248 5.2650 0.02574 0.03272 0.03607

LOOHKRR 4.881 5.305 5.3214 0.01159 0.03677 0.04051

7.2 Stereopsis

Table 2 shows the negative logarithm of the predictive density (NLPD) and
mean squared error (MSE) for various kernel ridge regression models over train-
ing, validation and test partitions of of the stereopsis benchmark dataset. An
anisotropic Gaussian radial basis function kernels and model selection based on
validation set NLPD are used throughout. The labels for the first six models
are as described for the gaze dataset. An investigation of the test data revealed
that the negative log-likelihood for one of the test patterns dominated the con-
tribution from the other patterns, as shown in Figure 3 (a). An advantage of
generating a predictive distribution, rather than a single point prediction, is
that it is possible to detect potential outliers in the test data (i.e. observations
that cannot be reconciled with an otherwise accurate model of the data). If we
choose to interpret the results as indicating, for instance a data entry error,
and delete pattern number 162, the resulting test-set NLPD statistics are much
more closely in accord with the corresponding validation set statistics. Looking
at the data in more detail, we can see that the test targets are clustered into
10 relatively compact clusters. Pattern #162 belongs to the cluster of values
lying between 150 and 170, Figure 3 (b). Figure 3 (c) the projection of points
with targets lying between 150 and 170 onto the first two principal components
of the corresponding input features (excluding pattern #162). This shows that
the input features for pattern #162 are atypical of patterns with a target of



≈ 160. Figure 3 (d) shows the results obtained using simple linear regression on
all patterns belonging to this cluster, excluding pattern #162 (blue circles). It
can be seen that there is a reasonably strong correlation between the predicted
and true target values. The prediction of this model on pattern #162 predicts
a much lower target value, suggesting that the relationship between target and
input features for pattern #162 is different than that for the rest of the cluster.
The predicted targets for a KRR model based on the entire training partition
are also shown (green × and black square). Again the model predicts a target
significantly lower than the given target value. This suggests the model may well
be correct in assigning a very low likelihood to pattern #162.
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Fig. 3. Analysis of stereopsis dataset: (a) The negative log-likelihood is dominated
by the contribution from pattern #162. (b) Illustration of the discrete nature of the
test targets. (c) Plot of the projection of points with targets lying between 150 and
170 onto the first two principal components of the corresponding input features. (d)
Regression results demonstrate that pattern #162 is clearly an outlier.

The results for the stereopsis dataset are more equivocal than those for the
gaze dataset. Again, a modest improvement in validation and test set NLPD is



obtained through the use of leave-one-out cross-validation in fitting the model
of the conditional variance, in the case of KRR/KRR+LOO and KRR+KRR/
KRR+LOO+KRR models. However in this case, both HKRR and LOOHKRR
models perform poorly. This may be because the data were not collected ran-
domly across the pattern space and this complicates the regularisation of the
model.

Table 2. Performance of various models, based on kernel ridge regression, on the
stereopsis dataset, in terms of mean squared error (MSE) and negative log predictive
density (NLPD) over the training and validation partitions. Two values of the NLPD
for the test set are given; the first gives the NLPD computed over the entire test set,
the second excludes the problematic pattern #162.

Model Train Set Valid Set Test Set Test Set Train Set Valid Set Test Set

description NLPD NLPD NLPD 1 NLPD 2 MSE MSE MSE

KRR -0.5930 +0.0241 +1.8742 -0.1124 1.464×105 3.481×105 3.095×105

KRR+LOO -0.4917 -0.1889 +0.7189 -0.2559 1.464×105 3.481×105 3.095×105

KRR+KRR -0.6194 +0.0620 +1.4088 -0.0805 1.464×105 3.481×105 3.095×105

KRR+LOO+KRR -0.5835 -0.2459 +0.4924 -0.2718 1.464×105 3.481×105 3.095×105

HKRR -0.3940 -0.2061 +1.6928 -0.1306 2.176×105 3.041×105 3.369×105

LOOHKRR -0.4813 -0.1798 +2.8873 -0.0803 1.725×105 2.599×105 2.860×105

KRR + Quant. Var. -0.2726 -0.0872 +0.2626 -0.1238 1.288×105 3.892×105 3.447×105

KRR Mixture -2.3967 -1.5538 +121.00 -1.6173 0.025×105 0.169×105 1.681×105

The last two rows of Table 2 relate to further experiments inspired by the
solution of Snelson and Murray, who noticed that the targets for this dataset
were strongly clustered into ten compact groups. The KRR + Quant. Var. model
adopted a KRR model of the predictive mean, and then estimated the constant
variance separately for each cluster. The KRR mixture model used a KRR model
to estimate the predictive mean of the target distribution and one of a set of ten
KRR models used to estimate the predictive variance within each cluster, de-
pending on the estimate of the predictive mean. The KRR Mixture model clearly
provides a substantial improvement in the achievable validation set NLPD. How-
ever the clustering of the target values was later revealed to be an artifact of
the data collection process, and so this improvement is essentially meaningless
as this approach would not be feasible in operation.

7.3 Outaouais

The outaouais dataset is the largest of the challenge benchmarks, and is too
large (20, 000 training patterns and 37 features) to easily apply kernel learning
methods directly. We therefore modelled this dataset using a multi-layer per-
ceptron network (e.g. [9]), with a heteroscedastic loss function [13] similar to
that used in training the heteroscedastic kernel ridge regression model. Bayesian
regularisation with a Laplace prior [24] was used to avoid over-fitting the train-
ing data and to identify and prune redundant connections. It is interesting to



note that this, rather dated, technique performed quite creditably, as shown in
Table 3.

Table 3. Performance of various models on the outaouais dataset, in terms of mean
squared error (MSE) and negative log predictive density (NLPD) over the training,
validation and test partitions. All the numbers are multiplied by 100.

Model Train Test Valid Train Test Valid

description NLPD NLPD NLPD MSE MSE MSE

Gaussian process -92.55 -92.13 -92.55 0 1.727 0

Classification + NN -152.4 -87.95 -152.4 0 5.635 0

CAN + CV -86.68 -64.81 -87.59 1.784 3.774 1.636

Heteroscedastic MLP -32.99 -23.04 -22.15 19.55 20.13 19.27

Gaussian Process 3.246 9.019 11.79 14.9 15.8 16.48

MDN Ensemble 17.93 19.93 19.56 27.72 27.83 27.99

NeuralBAG/EANN 47.68 50.5 49.44 26.71 27.03 26.63

baseline 109.5 111.5 112.4 10 10 10

8 Conclusions

In this paper, we have shown that the assumption of a heteroscedastic (input
dependent) noise structure can improve the performance of kernel learning meth-
ods for non-linear regression problems. The resulting estimate of the predictive
variance provides a useful estimate of the uncertainty inherent in the usual es-
timate of the predictive mean. We have also demonstrated that leave-one-out
cross-validation, which can be implemented very efficiently in closed form for a
variety of kernel learning algorithms, can be used to overcome the bias inherent
in (penalised) maximum likelihood estimates of predictive variance. It would be
interesting to compare the leave-one-out cross-validation method investigated
here with the Bayesian scheme proposed by Bishop and Qazaz [25], which in-
stead marginalises over the estimate of the predictive mean in fitting the model
of the predictive variance, or the Gaussian process treatment of Goldberg et al.
[26].

Appendix A: an alternative derivation of the leave-one-out error

We present here an other derivation of (19). Suppose that the point x1 is taken
out of the training set. Let α(−1) and b(−1) the parameters found by kernel ridge
regression and let us write the following block matrix decomposition:[

K + γΛ 1
1T 0

]
=
[

m11 m1
>

m1 M1

]
≡ M



Then [
α(−1)

b(−1)

]
= M1

−1[y2 . . . yn 0]>

And

ŷ
(−1)
1 = m1

>[α(−1) b(−1)]>

= m1
>M1

−1[y2 . . . yn 0]>

= m1
>M1

−1[m1 M1][α b]>

= m1
>M1

−1m1 α1 + m1
>[α2 · · ·αn b]>

On the other hand, the first row of the vector equality M [α b]> = y gives
y1 = m11α1 + m1

>[α2 · · ·αn b]>. And thus we get

y1 − ŷ
(−1)
1 = α1(m11 −m1

>M1
−1m1)

=
α1

(M−1)11
(24)

The last equality comes from block matrix inversion (also known as Schur com-
plement). Thus computing the leave-one-out error only requires the inversion of
the matrix M (and this matrix has been previously inverted to find the coeffi-
cients α and b of the kernel ridge regression algorithm).

This result is the same as (19). Indeed, the denominator 1 − hii is the i-th
diagonal element of

I −
[

K 1
1> 0

]
M−1 =

(
M −

[
K 1
1> 0

])
M−1 = γΛM−1.

The first equality comes from the definition of H (17). Finally, combining with
(12) (with λi = λi and γµ = γ), we get

ei

1− hii
=

eiλi

γ(M−1)ii

=
αi

(M−i)ii

.

Note that even though (19) and (24) are equal, the latter might be more numer-
ically stable when γ is very small: indeed, in this case hii ≈ 1.
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